How do you find the derivative of # 1/(x^2-1)# using the limit definition?
↳Redirected from
"How do you evaluate #sin^-1 (-sqrt3/2)#?"
#(df)/(dx)=(-2x)/(x^2-1)^2#
as #f(x)=1/(x^2-1)#
#f(x+h)=1/((x+h)^2-1)#
Hence, #f(x+h)-f(x)=1/((x+h)^2-1)-1/(x^2-1)#
= #((x^2-1)-((x+h)^2-1))/((x^2-1)((x+h)^2-1))#
= #((x^2-1)-(x^2+2hx+h^2-1))/((x^2-1)((x+h)^2-1))#
= #((x^2-1-x^2-2hx-h^2+1))/((x^2-1)((x+h)^2-1))#
= #((-2hx-h^2))/((x^2-1)((x+h)^2-1))# and
#(f(x+h)-f(x))/h=((-2x-h))/((x^2-1)((x+h)^2-1))#
Now #(df)/(dx)=Lt_(h->0)(f(x+h)-f(x))/h#
= #Lt_(h->0)((-2x-h))/((x^2-1)((x+h)^2-1))#
= #(-2x)/((x^2-1)(x^2-1))#
= #(-2x)/(x^2-1)^2#